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The idea of Shannon’s famous source coding theorem
[1] is to encode only typical messages. Since the typical
messages form a tiny subset of all possible messages, we
need less resources to encode them. We will show that
the probability for the occurence of non-typical strings
tends to zero in the limit of large message lengths. Thus
we have the paradoxical situation that although we “for-
get” to encode most messages, we loose no information
in the limit of very long strings. In fact, we make use of
redundancy, i.e. we do not encode “unnecessary” infor-
mation represented by strings which almost never occur.
Recall that a random message of length N is a string
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FIG. 1: Lossy coding.

x ≡ x1 · · ·xN of letters, which are independently drawn
from an alphabet A = {a1, . . . , aK} with a priori proba-
bilities

p(ak) = pk ∈ (0, 1], k = 1, . . . ,K (1)

where
∑

k pk = 1. Each given string x of a random mes-
sage is an instance or realization of the message ensemble
X ≡ X1 · · ·XN , where each random letter Xn is identical
to a fixed letter ensemble X,

Xn = X, n = 1, . . . , N. (2)

A particular message x = x1 · · ·xN appears with the
probability

p(x1 · · ·xn) = p(x1) · · · p(xn), (3)

which expresses the fact that the letters are statistically
independent from each other.
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Now consider a very long message x. Typically, the let-
ter ak will appear with the frequency Nk ≈ Npk. Hence,
the probability of such typical message is roughly

p(x) ≈ ptyp ≡ pN1
1 · · · pNk

K =
K∏

k=1

pNpk

k . (4)

We see that typical messages are uniformly distributed
by ptyp. This indicates that the set T of typical messages
has the size

|T | ≈ 1
ptyp

. (5)

If we encode each member of T by a binary string we
need

IN = log |T | = −N
K∑

k=1

pk log pk ≡ NH(X), (6)

bits, where H(X) is the Shannon entropy of the letter en-
semble. Thus for very long messages the average number
of bits per letter reads

I ≡ 1
N

IN = H(X). (7)

This is Shannon’s source coding theorem in a nutshell.
Now let us get a bit more into detail. In order to rigor-
ously prove the theorem we need the concept of a random
variable and the law of large numbers. Given the letter
ensemble X, the function f : A → R defines a discrete,
real random variable. The realizations of f(X) are the
real numbers f(x), x ∈ A. The average of f(X) is defined
as

〈f(X)〉 :=
∑
x∈A

p(x) f(x) =
K∑

k=1

pk f(ak), (8)

and the variance is given by

∆2f(X) := 〈f2(X)〉 − 〈f(X)〉2. (9)

For the sequence f(X) ≡ f(X1), . . . , f(XN ) we define its
arithmetic average as

A :=
1
N

N∑
n=1

f(Xn), (10)

which is also a random variable. Since the Xn are iden-
tical copies of the letter ensemble X, the average of A is
equal to the average of f(X),

〈A〉 =
1
N

N∑
i=1

〈f(Xn)〉 = 〈f(X)〉, (11)
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and the variance of A reads

∆2A = 〈A2〉 − 〈A〉2 (12)

=
1

N2

∑
n,m

〈f(Xn)f(Xm)〉

− 1
N2

∑
n,m

〈f(Xn)〉〈f(Xm)〉 (13)

=
1

N2

∑
n

{
〈f2(Xn)〉 − 〈f(Xn)〉2

}
(14)

=
1
N

∆2f(X). (15)

The relative standard deviation of A yields

∆A

〈A〉
=

1√
N

(
∆f(X)
〈f(X)〉

)
. (16)

Concluding, in the limit of large N the arithmetic average
of the sequence f(X) and the ensemble average of f(X)
coincide. This is the law of large numbers. It is respon-
sible for the validity of statistical experiments. Without
this law, we could never verify statistical properties of
a system by performing many experiments. In partic-
ular, quantum mechanics would be free of any physical
meaning.

Let us reformulate the law of large numbers in the ε, δ-
language. For δ > 0 we define the typical set T of a ran-
dom sequence X as the set of realizations x ≡ x1 · · ·xN

such that

〈f(X)〉 − δ ≤ 1
N

N∑
n=1

f(xn) ≤ 〈f(X)〉+ δ. (17)

The law of large numbers implies that for every ε, δ > 0
there is a natural number N0, such that for all N > N0

the total probability of all typical sequences fulfills

PT ≡
∑
x∈T

p(x) ≥ 1− ε. (18)

The total probability PT represents the probability for a
randomly chosen sequence x to lie in the typical set T .
Now consider the special random variable

f(X) := − log p(X). (19)

The average of f(X) equals the Shannon entropy of the
ensemble X,

〈f(X)〉 = −
∑
x∈A

p(x) log p(x) = H(X). (20)

The typical set now contains all messages x whose prob-
ability fulfills

H − δ ≤ − 1
N

N∑
n=1

log p(xn) ≤ H + δ, (21)

or equivalently

2−N(H+δ) ≤ p(x) ≤ 2−N(H−δ), (22)

where H ≡ H(X). By the law of large numbers, the
probability for a randomly drawn message x to be a mem-
ber of T reads

PT ≡
∑
x∈T

p(x) ≥ 1− ε. (23)

If we encode only typical sequences, the probability of
error

Perr := 1− PT ≤ ε (24)

can be made arbitrarily small by choosing N large
enough. Now let us determine how many typical se-
quences there are. The lefthand side of (22) gives

p(x) ≥ 2−N(H+δ) (25)

⇔
∑
x∈T

p(x) ≥ |T | 2−N(H+δ). (26)

The righthand side of (22) gives

p(x) ≤ 2−N(H−δ) (27)

⇔
∑
x∈T

p(x) ≤ |T | 2−N(H−δ), (28)

which yields together with (23)

|T | 2−N(H−δ) ≥ 1− ε (29)

⇔ |T | ≥ (1− ε) 2N(H−δ). (30)

Relations (28) and (30) can be combined into the crucial
relation

(1− ε) 2N(H−δ) ≤ |T | ≤ 2N(H+δ). (31)

For N →∞ we can choose ε, δ = 0 and obtain the desired
expression

|T | → 2NH(X), (32)

thus we need IN → NH(X) bits to encode the message.
Equivalently, the information content per letter reads I =
H(X) bits. Finally, let us investigate if we can further
improve the compression. Relation (30) gives a lower
bound for the size of the typical set. Let us compress
below H bits per letter by fixing some ε′ > 0 and encode
only sequences that lie in a “subtypical set” T ′ ⊂ T whose
size reads

|T ′| ≤ (1− ε)2N(H−δ−ε′) < 2N(H−δ−ε′). (33)

The righthand side of (22) states that the probability of
a typical sequence is bounded from above by

p(x) ≤ pmax ≡ 2−N(H−δ). (34)
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If we encode only the typical sequences in the subtypical
set T ′, the probability that a sequence is in T ′ fulfills

PT ′ =
∑
x∈T ′

p(x) (35)

≤ |T ′| · pmax = 2N(H−δ−ε′) 2−N(H−δ) (36)

= 2−Nε′ . (37)

Because ε′ > 0, the probability of a successful encoding

goes to 0 for N →∞,

PT ′ → 0. (38)

Concluding, if we compress the messages below NH(X)
bits, we are not able to encode all typical messages and
for N →∞ we will loose all information. A good review
on the issue can also be found in [2, 3].
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